Convexification of Neural Graph
نویسنده
چکیده
Traditionally, most complex intelligence architectures are extremely non-convex, which could not be well performed by convex optimization. However, this paper decomposes complex structures into three types of nodes: operators, algorithms and functions. Further, iteratively propagating from node to node along edge, we prove that “regarding the neural graph without triangles, it is nearly convex in each variable, when the other variables are fixed.” In fact, the non-convex properties stem from triangles and functions, which could be transformed to be convex with our proposed convexification inequality. In conclusion, we generally depict the landscape for the objective of neural graph and propose the methodology to convexify neural graph.
منابع مشابه
An Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems
By p-power (or partial p-power) transformation, the Lagrangian function in nonconvex optimization problem becomes locally convex. In this paper, we present a neural network based on an NCP function for solving the nonconvex optimization problem. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...
متن کاملConvexification and Deconvexification for Training Neural Networks
This paper presents a new method of training neural networks including deep learning machines, which is based on the idea of convexifying the training error criterion by the use of the risk-averting error (RAE) criterion. Convexification creates tunnels between the depressed regions around saddle points, tilts the plateaus, and eliminates nonglobal local minima. The difficulties in computing th...
متن کاملConvexification Schemes for Sqp Methods
Sequential quadratic programming (SQP) methods solve nonlinear optimization problems by finding an approximate solution of a sequence of quadratic programming (QP) subproblems. Each subproblem involves the minimization of a quadratic model of the objective function subject to the linearized constraints. Depending on the definition of the quadratic model, the QP subproblem may be nonconvex, lead...
متن کاملLp Relaxations Better than Convexification for Multicommodity Network Optimization Problems with Step Increasing Cost Functions
We address here a class of particularly hard-to-solve combinatorial optimization problems namely multicommodity network optimization when the link cost functions are discontinuous step increasing. The main focus is on the development of relaxations for such problems in order to derive lower bounds. A straightforward way of getting lower bounds is to solve the “convexification” of the problem, i...
متن کاملOn convexification of polygons by pops
Given a polygon P in the plane, a pop operation is the reflection of a vertex with respect to the line through its adjacent vertices. We define a family of alternating polygons, and show that any polygon from this family cannot be convexified by pop operations. This family contains simple, as well as non-simple (i.e., self-intersecting) polygons, as desired. We thereby answer in the negative an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.02901 شماره
صفحات -
تاریخ انتشار 2018